Mathematical Finance Dylan Possamaï

Assignment 3

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} , unless otherwise stated.

A martingale inequality

Let $(M_n)_{n\in\mathbb{N}}$ be an (\mathbb{F},\mathbb{P}) -martingale in discrete-time such that $M_0=0$ and for any $n\in\mathbb{N}$

$$|M_{n+1} - M_n| \le a_{n+1}, \mathbb{P}$$
-a.s

for some sequence $(a_n)_{n \in \mathbb{N}^*}$ of non-negative numbers satisfying $A^2 := \sum_{n=1}^{+\infty} a_n^2 < +\infty$.

- 1) Prove that M is bounded in $\mathbb{L}^2(\mathbb{R}, \mathcal{F}, \mathbb{P})$. Deduce that $M_n \longrightarrow_{n \to +\infty} M_\infty$, \mathbb{P} -almost surely and in $\mathbb{L}^2(\mathbb{R}, \mathcal{F}, \mathbb{P})$, for some M_∞ in $\mathbb{L}^2(\mathbb{R}, \mathcal{F}, \mathbb{P})$.
- 2) Show that for any c > 0

$$\mathbb{P}\left[\sup_{n\in\mathbb{N}}M_n\geq c\right]\leq \exp\left(-\frac{c^2}{2A^2}\right).$$

Hint: try to apply Doob's maximal inequality to $(e^{\lambda M_n})_{n \in \mathbb{N}}$, for some $\lambda > 0$. You may use the inequality $\cosh(x) \leq e^{x^2/2}$, $x \in \mathbb{R}$.

Brownian motion and stopping times

Let B be a one-dimensional (\mathbb{F}, \mathbb{P}) -Brownian motion. For $x \in [-1, 1]$, we define $B_t^x = x + B_t$, $t \ge 0$ a Brownian motion 'started at x'. Let $\tau^x := \inf\{t > 0 : |B_t^x| \ge 1\}$ be the first time that it exits the interval [-1, 1].

1) Let g be a continuous function on [-1, 1]. Show that the function $u: [-1, 1] \longrightarrow \mathbb{R}$ defined by

$$u(x) := \mathbb{E}^{\mathbb{P}}\left[\int_{0}^{\tau_{x}} g(B_{s}^{x}) \mathrm{d}s\right],$$

is well-defined and continuous.

Hint: start by showing that τ_x is \mathbb{P} -integrable by considering the martingale $((B_t^x)^2 - t)_{t>0}$.

2) Suppose that v is a bounded function on [-1, 1] such that v(-1) = v(1) = 0, and furthermore the process M^x defined by

$$M_t^x := v \left(B_{t \wedge \tau^x}^x \right) + \int_0^{t \wedge \tau^x} g(B_s^x) \mathrm{d}s, \ t \ge 0,$$

is an (\mathbb{F}, \mathbb{P}) -local martingale for each $x \in [-1, 1]$.

Prove that u = v.

3) Suppose that v is a bounded function on [-1,1] such that v(-1) = v(1) = 0 and it satisfies the second-order differential equation

$$\frac{1}{2}v''(x) = -g(x). \tag{0.1}$$

Show that v = u.

4) Replacing g by the Dirac delta mass δ_y at some point $y \in \mathbb{R}$, formally compute the solution v_y to (0.1). The function $v_y(x) =: G(x, y)$ is called Green's function. Can you find a solution to (0.1) for more general g, in terms of G?

Some SDEs

Let σ be a continuous positive function on \mathbb{R} , satisfying the following linear growth condition for some K > 0

$$|\sigma(x)| \le K(1+|x|), \ x \in \mathbb{R}.$$

Suppose that we have been given a one-dimensional (\mathbb{F}, \mathbb{P}) -Brownian motion B, and a family of processes $(X^x)_{x \in \mathbb{R}}$ such that, for each $x \in \mathbb{R}$, the following stochastic differential equation is satisfied

$$X_t^x = x + \int_0^t \sigma(X_s^x) \mathrm{d}B_s, \ t \ge 0.$$

1) Prove that for each time T > 0 and each $p \ge 1$, there is a constant c (depending only on T, K and p but not on x) such that

$$\mathbb{E}^{\mathbb{P}}\left[\sup_{0 \le t \le T} |X_T^x|^p\right] \le c(1+|x|^p).$$

2) Construct a pair (X, B), where B is another one-dimensional (\mathbb{F}, \mathbb{P}) -Brownian motion, such that the following stochastic differential equation is satisfied

$$X_t = \int_0^t \operatorname{sgn}(X_s) \mathrm{d}B_s, \ t \ge 0,$$

where $sgn(x) := -\mathbf{1}_{\{x \le 0\}} + \mathbf{1}_{\{x > 0\}}.$